1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
| import os import numpy as np from tqdm import tqdm import keras from keras import layers import tensorflow as tf from joblib import dump,load from keras.callbacks import TensorBoard from keras.applications import MobileNetV2 from keras import layers from keras.models import Model from keras.optimizers import SGD
root = '/media/sunyan/文档/data'
def load_data(root, vfold_ratio=0.2, max_items_per_class=4000): all_files = os.listdir(root) files_paths = [os.path.join(root,i) for i in all_files] x = np.empty([0, 784]) y = np.empty([0]) class_names = []
for idx, file in enumerate(tqdm(files_paths)): data = np.load(file) data = data[0: max_items_per_class, :] labels = np.full(data.shape[0], idx)
x = np.concatenate((x, data), axis=0) y = np.append(y, labels)
class_name, ext = os.path.splitext(os.path.basename(file)) class_names.append(class_name)
permutation = np.random.permutation(y.shape[0]) x = x[permutation, :] y = y[permutation]
vfold_size = int(x.shape[0] / 100 * (vfold_ratio * 100))
x_test = x[0:vfold_size, :] y_test = y[0:vfold_size]
x_train = x[vfold_size:x.shape[0], :] y_train = y[vfold_size:y.shape[0]] return x_train, y_train, x_test, y_test, class_names
def build_model(): model = keras.Sequential() model.add(layers.Convolution2D(16, (3, 3), padding='same', input_shape=x_train.shape[1:], activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.Convolution2D(32, (3, 3), padding='same', activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.Convolution2D(64, (3, 3), padding='same', activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(128, activation='relu')) model.add(layers.Dense(100, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['top_k_categorical_accuracy']) print(model.summary())
return model
def gap_model(): model = keras.Sequential() model.add(layers.Convolution2D(16, (3, 3), padding='same', input_shape=x_train.shape[1:], activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.Convolution2D(32, (3, 3), padding='same', activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.Convolution2D(64, (3, 3), padding='same', activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.GlobalAveragePooling2D()) model.add(layers.Dense(100, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['top_k_categorical_accuracy']) print(model.summary())
return model
def one2three_model(): model = keras.Sequential() model.add(layers.Convolution2D(16, (3, 3),padding='same', input_shape=x_train.shape[1:], activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.Convolution2D(32, (3, 3), padding='same', activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.Convolution2D(24, (1, 1), padding='same', activation='relu')) model.add(layers.Convolution2D(64, (3, 3), padding='same', activation='relu')) model.add(layers.MaxPooling2D(pool_size=(2, 2))) model.add(layers.Flatten()) model.add(layers.Dense(128, activation='relu')) model.add(layers.Dense(100, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['top_k_categorical_accuracy']) print(model.summary())
return model
def lenet(): model = keras.Sequential() model.add(keras.layers.Convolution2D(filters=6, kernel_size=(5, 5), strides=(1, 1), padding='same', input_shape=x_train.shape[1:], activation='relu')) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2, padding='valid')) model.add(keras.layers.Convolution2D(filters=16, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation='relu')) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2, padding='valid')) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(300, activation='relu')) model.add(keras.layers.Dense(200, activation='relu')) model.add(keras.layers.Dense(100, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['top_k_categorical_accuracy']) print(model.summary())
return model
def lenet_one2three(): model = keras.Sequential() model.add(keras.layers.Convolution2D(filters=6, kernel_size=(5, 5), strides=(1, 1), padding='same', input_shape=x_train.shape[1:], activation='relu')) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2, padding='valid')) model.add(layers.Convolution2D(3, kernel_size=(1, 1), strides=(1, 1),padding='same', activation='relu')) model.add(keras.layers.Convolution2D(filters=16, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation='relu')) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2, padding='valid')) model.add(keras.layers.Flatten()) model.add(keras.layers.Dense(300, activation='relu')) model.add(keras.layers.Dense(200, activation='relu')) model.add(keras.layers.Dense(100, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['top_k_categorical_accuracy']) print(model.summary()) return model
def lenet_gap(): model = keras.Sequential() model.add(keras.layers.Convolution2D(filters=6, kernel_size=(5, 5), strides=(1, 1), padding='same', input_shape=x_train.shape[1:], activation='relu')) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2, padding='valid')) model.add(keras.layers.Convolution2D(filters=16, kernel_size=(5, 5), strides=(1, 1), padding='valid', activation='relu')) model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2, padding='valid')) model.add(layers.GlobalAveragePooling2D()) model.add(keras.layers.Dense(64,activation='relu')) model.add(keras.layers.Dense(100, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['top_k_categorical_accuracy']) print(model.summary()) return model
def pickle_load(): with open('x_train.pkl', 'rb') as f: x_train= load(f)
with open('y_train.pkl', 'rb') as f: y_train = load(f)
with open('x_test.pkl', 'rb') as f: x_test = load(f)
with open('y_test.pkl', 'rb') as f: y_test = load(f)
with open('class_names.pkl', 'rb') as f: class_names = load(f)
return x_train, y_train, x_test, y_test, class_names
if __name__ == '__main__':
x_train, y_train, x_test, y_test, class_names = pickle_load()
num_classes = len(class_names) image_size = 28 print(len(x_train))
x_train = x_train.reshape(x_train.shape[0], image_size, image_size, 1).astype('float32') x_test = x_test.reshape(x_test.shape[0], image_size, image_size, 1).astype('float32')
x_train /= 255.0 x_test /= 255.0
y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes)
model = lenet_one2three()
model.fit(x=x_train, y=y_train, validation_split=0.2, batch_size=256, verbose=2, epochs=10,callbacks=[TensorBoard(log_dir='log')])
score = model.evaluate(x_test, y_test, verbose=0) print('Test accuarcy: {:0.2f}%'.format(score[1] * 100))
model.save('keras.h5')
with open('class_names.txt', 'w') as file_handler: for item in class_names: file_handler.write("{}\n".format(item))
|